Heal Your Gut to Reverse Autoimmune Disease

Heal Your Gut to Reverse Autoimmune Disease

Source: GreenMedInfo.com
Ali Le Vere, B.S., B.S.
June 13, 2017

Health Begins In the Gut.  From a clinical standpoint, insofar as functional medicine is concerned, whether you present with rheumatoid arthritis, multiple sclerosis, ulcerative colitis, or systemic lupus erythematosus—the fundamental objective is the same: heal the gut.

Hippocrates understood the inextricably intertwined relationship between the systemic health of the organism and the nine-meter tube from mouth to anus when he famously uttered, “All disease begins in the gut” over two thousand years ago. The ancient Greek physician also illuminated his understanding of the therapeutic role of nutrition when he championed holistic medicine with his proclamation, “Let food be thy medicine and medicine be thy food”.

After all, covering an average surface area of thirty-two square meters, the size of half a badminton court, the gut represents the second largest interface between the external environment and the internal biochemical milieu of the body (Helander & Fandriks, 2014). Over sixty tons of food will pass through our gastrointestinal tract in our lifetime.

Why is gut health so paramount in prevention and treatment of autoimmune disease? If you are a savvy consumer of holistic health information, you probably already know how important our microbiome—the collection of one hundred trillion commensal bacteria that inhabit our colon, plus their genetic material—is to our health. Although the widely cited 10:1 ratio has been revised, researchers estimate that we have at least as many bacterial cells as human cells, which has led some scientists like Stanford’s Dr. Justin Sonnenberg to hypothesize that humans may merely be elaborate vessels designed for the propagation of bacterial colonies (Sender, Fuchs, & Milo, 2016).

At any single moment, two to six pounds of bacteria resides within us. Even more awe-inspiring is that a single person contains 3.8×10^13 bacteria (38,000,000,000,000 colony forming units)—a number representing more than all the stars in the galaxy (Sender, Fuchs, & Milo, 2016).

Following the advent of germ theory and the discovery of vaccinations, scientists were under the impression that all bacteria were bad bugs, and speculated that specific microbes were the causative agents behind particular disease entities. This led to the reductionist, pill-for-every-ill therapies that predominate in Western medicine, as well as to the maligning of all bacteria as organisms to be feared and eradicated. Thus the age of antibiotics, triclosan-laden anti-bacterial soaps, hand sanitizer, chemical cleaners, and the “there’s a shot for that” mentality was inaugurated.

Ironically, it is rumored that on his deathbed, Louis Pasteur, the father of immunization and pasteurization himself, admitted that it is the terrain—the gut ecology and biochemical milieu—that matters, rather than the infecting pathogen (Tracey, 2017). In other words, our bodies, like plants, are more susceptible to pests, or infection, when our ecosystem is in a state of disharmony—when our microbial soil is depleted and our micronutrient status is compromised.

The magic bullet approach initially introduced by Pasteur, however, was misguided, and has the potential to produce dire consequences for immune health. In fact, the hygiene hypothesis, embraced by many scientists, purports that the reason that autoimmune diseases and atopic disorders (eczema, allergies, asthma) are epidemic in the Western world while virtually absent from developing nations is the hyper-sanitized, antibiotic-ridden society in which we live, which has decimated our gut microflora and thus obliterated their beneficial effects on our immune systems (after all, 70% of our immune system resides within our gut) (Vighi et al., 2008).

According to the hygiene hypothesis, the immune system acquires self-tolerance, or the ability to distinguish self from stranger and safety from danger, and thus prevent overreactions against our own tissue, based on repeated infectious exposures (Eschler, Hasham, & Tomer, 2011). Further, “Some pathogens have the potential to prevent or abrogate rather than induce an autoimmune process,” such that annihilating them with antibiotics results in improper maturation of the immune system and a tendency towards autoimmune reactions (Christen, 2014).

However, antibiotics are not only harmful in that they prevent infections from instructing development of the immune system. They also disrupt the finely tuned symphony of actions orchestrated by our microbiota, or those friendly bugs that inhabit our gut. The microbiota serve innumerable roles, including competing for attachment sites with potentially pathogenic microbes, reducing their virulence, inhibiting the effects of bacterial toxins, and generating anti-microbial substances such as bacteriocidins and hydrogen peroxide that can selectively suppress pathogenic bacteria and fungi (Corr et al., 2009; Castagliuolo et al., 1999).

Our gut microbes also promote the de-conjugation and detoxification of proliferative, carcinogenic estrogen species and other exogenous toxins, reducing their enterohepatic recirculation (Gorbach, 1984). Commensal bacteria likewise aid in nutrient extraction and assimilation, as the secondary bile acids and short-chain fatty acids they produce from fermentation of indigestible carbohydrates lead to liberation of compounds like peptide YY from cells, which decreases intestinal transit, encourages satiety, maximizes nutrient absorption, and increases energy harvested from food (Boulange et al., 2016).

Critically, gut bacteria reinforce the intestinal barrier, preventing metabolic endotoxemia, a process which contributes to metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), coronary heart disease, stroke, and polycystic ovarian syndrome (PCOS) (Neves et al., 2013; Lindheim et al., 2017). The products of microbial fermentation of prebiotic carbohydrates also increase insulin sensitivity and improve glucose balance, which prevents the pathologic insulin resistance, oxidative stress, and endothelial dysfunction that lead to diabetes and cardiovascular disease (Boulange et al., 2016).

The maintenance of the intestinal lining by the microbiota similarly prevents autoimmune disease. For instance, a decrease in bifidobacteria populations leads to intestinal hyperpermeability, or leaky gut, which in turn leads to the translocation of metabolic byproducts, food antigens, bacteria, and lipopolysaccharide (also known as LPS, an immunogenic cell wall component from Gram-negative bacteria) across the gut barrier into systemic circulation (Rapin & Wiernsperger, 2010). This activates the mesenteric lymph nodes and gut-associated lymphoid tissue (GALT) and instigates a downstream inflammatory cascade.

Medications Compromise Gut Barrier Integrity

A single course of antibiotics can lead to perturbations in microbiota lasting up to 16 months on average, or 18 to 24 months for Clindamycin and up to four years following triple therapy for Helicobacter pylori (Hawrelak & Myers, 2004; Jernberg et al., 2010; Cotter et al., 2012). Even worse, novel molecular analysis techniques using 16S rRNA have demonstrated that antibiotic-resistant microbes are present up to four years post-antibiotic (Jernberg et al., 2010; Cotter et al., 2012).

Other commonly used medicinal agents, non-steroidal anti-inflammatory drugs (NSAIDs) such as Motrin, Ibuprofen, and Naproxen, increase concentrations of gram-negative bacteria, which produce lipopolysacchide (LPS), the endotoxin that can traverse the gut barrier and generate a milieu favoring insulin resistance, type 2 diabetes, NAFLD, PCOS, coronary heart disease and stroke (Marlicz et al., 2014).

In addition to inducing gastrointestinal ulcers, increasing risk of myocardial infarction by a third, and doubling risk of congestive heart failure, NSAIDs have also been demonstrated to decrease concentrations of bifidobacteria and lactobacilli—beneficial commensal flora populations in our gut (Bhala et al., 2013; Montenegro et al., 2014). Because bifidobacteria are responsible for butyrate production, the short chain fatty acid that heals and seals the gut lining, a decrease in bifidobacteria can perpetuate leaky gut syndrome.

What’s more, acid-blocking drugs, or proton pump inhibitors (PPIs) such as Prilosec and Nexium, used for gastroesophageal reflux disease (GERD), are associated with a decrease in small bowel beneficial bifidobacteria and a significant decline in microbial diversity within seven days of beginning therapy (Seto et al., 2014; Wallace et al., 2011). PPIs have likewise been shown to increase the risk of small intestinal bacterial overgrowth (SIBO) and the potentially fatal infection, Clostridium difficile (Lo & Chan, 2013; Janarthanan et al., 2012).

With antibiotics in particular, however, there is evidence of localized permanent extinction—in other words, some species of microorganisms never recover post-antibiotic, and cannot be “reinoculated” unless you undergo the arduous and expensive process of fecal microbiota transplant (FMT).

Furthermore, even food preparation and processing can influence intestinal permeability. When food is browned or caramelized as part of the Maillard reaction, reducing sugars spontaneously react with lipids, nucleic acids, and aminopeptides, creating advanced glycation end products (AGEs) in a process that generates free radicals, inflammation, and ensuing intestinal permeability (Vlassara & Uribarri, 2004; Bengmark, 2007).

The Leaky Gut – Autoimmune Connection

The intestinal barrier is a mucosal surface wherein epithelial cells known as enterocytes are separated by tight junction proteins, desmosomes, and adherens junctions that function as architectural scaffolding and selective gates, opening and closing to allow fluid and nutrients to be absorbed and waste products to be excreted (Groschwitz & Hogan, 2009). According to Turner (2009), epithelial cells “establish a barrier between sometimes hostile external environments and the internal milieu” (p. 799). This barrier is critical because “The mucosa is directly exposed to the external environment and taxed with antigenic loads…at far greater quantities on a daily basis than the systemic immune system sees in a lifetime” (Mayer, 2003).

Tight junctions, regulated by a molecule called zonulin, as well as by conformational changes in the proteins occludin and claudin, are dynamic intercellular structures that modulate the trafficking or passage of macromolecules from the intestinal lumen to the submucosa and into systemic circulation (Fasano, 2012). According to Rapin and Wiernsperger (2010), “Tight junctions play a major role in regulating the paracellular passage of luminal elements” (p. 635).

Under normal circumstances, solutes exceeding a certain size, or molecular radius, are prohibited from absorption across the gut barrier by competent tight junctions (Fasano, 2012). However, when insults such as gluten, dysbiosis, pathogens, toxins, over-exercising, chemotherapy, radiation, and medications such as NSAIDs and steroids disrupt the tight junctions, microbial products and intact food proteins that have not been degraded into their constituent parts translocate across the paracellular space into the body (Fasano, 2012).

Macrophages embedded in the GALT are part of the innate immune system, or the non-specific, first line of defense against infection (Fasano, 2011; Yu & Yang, 2009). These cells, along with dendritic cells, recognize the incoming undigested food particles, toxic agents, and bacterial components as foreign invaders, and present them to cells of the adaptive immune system called T and B lymphocytes, leading to clonal expansion (proliferation or multiplication of specific subsets of T and B cells) and recruitment of more pro-inflammatory immune cells to the gut through a process called leukocyte homing.

The release of inflammatory cytokines, or intercellular signaling molecules such as interleukin-1 (IL-1), interleukin-2 (IL-6), and tumor necrosis factor alpha (TNF-α) at the site of immune activation causes other immune cells migrating throughout the lymphatic vessels of the body to express more cell adhesion molecules (CAMs). CAMS enable white blood cells to stick to and roll along blood vessels and extravasate, or navigate across, the blood vessels made leaky by histamine and other local vasodilators, into the inflamed intestinal tissue. Cytokines contribute to this vicious process of leaky gut syndrome, as they also play a prominent role in compromising tight junction integrity (Watson, Duckworth, Guan, & Montrose, 2009). This culminates in a massive inflammatory response that can become systemic and lead to autoimmunity.

When the amino acid sequence is homologous between the target antigen, such as gluten, against which the immune system is mounting a response, and tissue proteins, such as the thyroid tissue, a case of mistaken identity occurs, and the immune response can become directed against self tissues, manifesting as autoimmune disease (Hashimoto’s thyroiditis in this instance). Summarized by Suzuki (2013), “Disruption of the intestinal tight junction barrier, followed by permeation of luminal noxious molecules, induces a perturbation of the mucosal immune system and inflammation, and can act as a trigger for the development of intestinal and systemic diseases” (p. 631).

A protein called zonulin is responsible for induction of tolerance and orchestration of immune responses by modulating intercellular tight junctions in the gastrointestinal epithelium in a rapid, reversible, and reproducible fashion (Fasano, 2011). Zonulin evolved as an adaptive mechanism to flush out microorganisms as part of the innate immune response against bacterial colonization of the small intestine (Fasano, 2011).

Specific gliadin-permeating peptides can initiate intestinal permeability via MyD88-dependent release of zonulin, which causes conformational changes in tight junction architecture and cytoskeletal assembly that leads to paracellular entry of gliadin (a gluten sub-fraction) into the intestinal submucosa (Thomas, Fasano, & Vogel, 2006). Signaling through the CXCR3-mediated, MyD88-dependent pathway generates a Th1-dominant, pro-inflammatory cytokine milieu that recruits mononuclear cells into the submucosa (Fasano, 2011). After gliadin infiltrates the lamina propria, the barrier function can be further disrupted by the persistence of inflammatory mediators such as TNF-α and interferon-gamma (IFN-γ) (Fasano, 2011).

In those individuals predisposed to celiac disease, gliadin is presented by HLA-DQ and HLA-DR major histocompatibility complex (MHC) molecules, leading to abrogation of oral tolerance and a transition to a Th1/Th17 response (Fasano, 2011). Dendritic cells home to pancreatic and mesenteric lymph nodes and present gliadin, leading to “migration of CD4−CD8−γδ and CD4−CD8+ αβ T cells to the target organ (gut and/or pancreas) where they cause inflammation” (Fasano, 2011). This results in the interaction between T cells and antigen-presenting cells, producing the adaptive immune response that causes profound villous atrophy in celiac disease (Fasano, 2011). Celiac disease patients have higher concentrations of serum zonulin during the acute phase of disease compared with their healthy counterparts, and also have over-expressed CXCR3, the intestinal receptor for gliadin (Fasano, 2011).

However, even in healthy individuals, biopsies reveal a transient zonulin release upon gluten ingestion accompanied by an increase in intestinal permeability that does not reach the level observed in celiac disease (Drago et al., 2006). The authors of the in vitro study state, “Based on our results, we concluded that gliadin activates zonulin signaling irrespective of the genetic expression of autoimmunity, leading to increased intestinal permeability to macromolecules” (Drago et al., 2006, p. 408). Furthermore, when intestinal biopsies were examined from celiac patients with active disease, celiac patients in remission, non-celiac gluten-sensitive patients, and non-celiac controls, intestinal permeability was found to occur after gliadin exposure in all individuals (Hollon et al., 2015).

The same mechanism is implicated in all autoimmune diseases—leaky gut leading to molecular mimicry and/or the bystander effect—biochemical processes that could be characterized as “friendly fire” that are responsible for the resultant tissue damage and symptom expression (Fasano, 2012). Thus, compromised gut integrity, or dysfunctional intestinal permeability, is a precursor and essential trigger for all autoimmune disease, including celiac disease, type 1 diabetes, rheumatoid arthritis, multiple sclerosis, Crohn’s disease, ulcerative colitis, and ankylosing spondylitis, and can also appear in allergic syndromes such as asthma (Fasano, 2012; Drago et al., 2006; Westall, 2007; Edwards, 2008; Yacyshyn & Meddings, 1995; Martinez-Gonzalez et al., 1994; Schmitz et al., 1999; Hijazi et al., 2004).

Moreover, intestinal permeability, as assessed by a lactulose-mannitol test, may predispose a patient to the development of food reactions, as increased intestinal permeability is associated with food allergy (Laudat et al., 1994; Andre, 1986). However, food allergy itself may inflict “mucosal damage caused by local hypersensitivity reactions to food antigens,” creating a pattern in which an individual becomes sensitive to more and more foods (Tatsuno, 1989).

An Ounce of Prevention is Worth a Pound of Cure

For people resistant to dietary and lifestyle modifications to resolve intestinal permeability, I will share that I am a living testament to the consequences of dysfunctional intestinal permeability, which leads to a domino scenario where autoimmune conditions are developed one after another. This scenario is far from uncommon, as a fourth of patients with autoimmune disease tend to develop additional autoimmune diseases, leading to multiple autoimmune syndrome. It is often cited that an individual is three times as likely to develop another autoimmune disease after acquiring one (Cojocaru, Cojocaru, & Silosi, 2010). Hence, my mission is to save others from the heartache I have endured as a consequence of these devastating chronic illnesses.

The succession of autoimmune diseases I developed due to a confluence of environmental triggers, genetic susceptibilities, and compromised gut barrier speak to the importance of preserving tight junction integrity and acting as a guardian of your gut epithelium. The gravity of leaky gut syndrome is illustrated by Brandtzaeg (2013), who states, “Increased epithelial permeability for antigens is a crucial primary or secondary event in the pathogenesis of several disorders” (p. 67).

In my case, a multitude of factors converged to produce autoimmunity—intestinal hyper-permeability, dysbiosis, food sensitivities, mitochondrial dysfunction, genetic polymorphisms, histamine intolerance, mycotoxins, adrenal dysfunction, heavy metal toxicity, micronutrient deficiencies, hormonal imbalances, and a host of recalcitrant and stealth infections. Reversing an autoimmune disease is magnitudes of order more complex than preventing one, which is why educating the public at large about how intestinal permeability serves as a prelude to autoimmunity is of the utmost importance.

However, if you go to a conventional physician complaining of a leaky gut, your concerns are likely to be dismissed and more often than not, you will leave with a recommendation to spend less time on the internet—or even worse, your symptoms will be branded psychosomatic and your doctor will label you a hypochondriac, as almost half of autoimmune patients experience in the subclinical stages of their disease (AARDA, 2017).

Despite the litany of peer-reviewed studies in the scientific literature on pathologic paracellular intestinal hyper-permeability, the biomedical establishment is by and large ignorant to this condition and its implications. Ironically, although Western medicine relegates leaky gut syndrome to the realm of fanciful fairy tales, the pharmaceutical industry is actively investigating drugs to reverse it (Kato et al., 2017). Only when there is a financial incentive and a pharmaceutical approach developed for a disorder is it anointed with legitimacy in the eyes of the allopathic physician.

If health is your objective, however, restoration of gut barrier integrity should be prioritized, since, “The autoimmune process can be arrested if the interplay between genes and environmental triggers is preventing by re-establishing intestinal barrier function” (Fasano & Shea-Donohue, 2005). Because gluten is pivotally implicated in intestinal hyper-permeability, its exclusion from the diet, along with an oligoantigenic elimination-provocation diet, should be a first line of treatment in any patient on the autoimmune spectrum.

References

American Autoimmune and Related Diseases Association. (2017). Autoimmune Statistics: Autoimmune Disease Fact Sheet. Retrieved from https://www.aarda.org/autoimmune-information/autoimmune-statistics/

Bengmark, S. (2007). Advanced glycation and lipoxidation end products–amplifiers of inflammation: the role of food. JPEN Journal of Parenteral and Enteral Nutrition, 31, 430–440.

Bhala, N., Emberson, J., Merhi, A., Abramson, S., Arber, N.,Baron, J.A.,…Baigent, C. (2013). Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. The Lancet, 382(9894), 769-779.

Boulange et al. (2016). Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Medicine, 8, 42.

Brandtzaeg, P. (2013). Gate-keeper function of the intestinal epithelium. Beneficial microbes, 4(1), 67-82.

Castagliuolo et al. (1999). Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infectious Immunology, 67(1), 302-307.

Christen, U. (2014). Editorial: pathogen infection and autoimmunity. International reviews of immunology, 33, 261-265.

Cojocaru, M., Cojocaru, I.M., & Silosi, I. (2010). Multiple autoimmune syndrome. Maedica, 5(2), 132-134.

Corr et al. (2009). Understanding the mechanisms by which probiotics inhibit gastrointestinal pathogens. Advances in Food Nutrition Research, 56, 1-15.

Cotter, P.D., Stanton, C., Ross, R.P., & Hill, C. (2012). The impact of antibiotics on the gut microbiota as revealed by high throughput DNA sequencing. Discovery Medicine, 13(70), 193-199.

Drago, S., El Asmar, R., De Pierro, M., Grazia Clemente, M., Tripathi, A., Sapone, A.,…Fasano, A. (2006). Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scandanavian Journal of Gastroenterology, 41, 408–419.

Edwards, C.J. (2008) Commensal gut bacteria and the etiopathogenesis of rheumatoid arthritis. Journal of Rheumatology, 35, 1477–1497. doi: 10.1007/s12016-011-8291-x.

Eschler, D.C., Hasham, A., & Tomer, Y. (2011). Cutting edge: the etiology of autoimmune thyroid diseases. Clinical Reviews in Allergy and Immunology, 41, 190-197.

Fasano, A. (2011). Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiology Reviews, 91, 151-175.

Fasano, A. (2012). Leaky gut and autoimmune disease. Clinical Reviews in Allergy and Immunology, 42(1), 71-78.

Fasano, A., & Shea-Donohue, T. (2005). Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. National Clinical Practice in Gastroenterology & Hepatology, 2(9), 416-422.

Gorbach, S.L. (1984). Estrogens, breast cancer, and intestinal flora. Reviews in Infectious Disease, 6(Suppl 1), S85-S90.

Groschwitz, K.R., & Hogan, S.P. (2009). Intestinal barrier function: Molecular regulation and disease pathogenesis. Journal of Allergy and Clinical Immunology, 124(1), 3-22.

Hawrelak, J.A., & Myers, S.P. (2004). The causes of intestinal dysbiosis: A review. Alternative Medicine Review, 9, 180-197.

Helander, H.F., & Fandriks, L. (2014). Surface area of the digestive tract – revisited. Scandinavian Journal of Gastroenterology, 49(6), 681-689.

Hijazi, Z., Molla, A.M., Al-Habashi, H., Muawad, W.M., Molla, A.M., & Sharma, P.N. (2004) Intestinal permeability is increased in bronchial asthma. Archives of Diseases in Children, 89, 227–229.

Hollon, J., Puppa, E.L., Greenwald, B., Goldberg, E., Guerrerio, A., & Fasano, A. (2015). Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients, 7(3), 1565-1576.  doi: 10.3390/nu7031565.

Janarthanan, S., Ditah, I., Adler, D.G., & Ehrinpreis, M.N. (2012). Clostridium difficile-associated diarrhea and proton pump inhibitor therapy: a meta-analysis. American Journal of Gastroenterology, 107(7), 1001-1010.

Jernberg, C., Lofmark, S., Edlund, C., & Jansson, J.K. (2010). Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology, 156(11), 3216-3223.

Kato, T., Honda, Y., Kurita, Y., Iwasaki, A., Sato, T., Kessoku, T.,…Nakajima, A. (2017). Lubiprostone improves intestinal permeability in humans, a novel therapy for the leaky gut: A prospective randomized pilot study in healthy volunteers. PLoS One, 12(4), e0175626.

Laudat, A., Arnaud, P., Napoly, A., & Brion, F. (1994). The intestinal permeability test applied to the diagnosis of food allergy in paediatrics. West Indian Medical Journal, 43(3), 87-88.

Lindheim, L., Bashir, M., Munzker, J., Trummer, C., Zachhuber, V., Leber, B.,…Obermayer-Pietsch, B. (2017). Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovarian syndrome (PCOS): A pilot study. PLoS One, 12(1), e0168390.

Lo, W. K., & Chan, W.W. (2013). Proton pump inhibitor use and the risk of small intestinal bacterial overgrowth: a meta-analysis. Clinical Gastroenterology and Hepatology, 11(5), 483-490.

Marlicz, W., Loniewski, I., Grimes, D.S., & Quigley, E.M. (2014). Nonsteroidal anti-inflammatory drugs, proton pump inhibitors, and gastrointestinal injury: contrasting interactions in the stomach and small intestine. Mayo Clinic Proceedings, 89(12), 1699-1709.

Martinez-Gonzalez, O., Cantero-Hinojosa, J., Paule-Sastre, P., Gomez-Magan, J.C., & Salvtierra-Rios, D. (1994) Intestinal permeability in patients with ankylosing spondylitis and their healthy relatives. British Journal of Rheumatology, 33, 644–648.

Mayer, L. (2003). Mucosal immunity. Pediatrics, 111(6 Pt 3), 1595-1600.

Montenegro, L., Losurdo, G., Licinio, R.. Zamparella, M., Giorgio, F., Lerardi, E.,…Principi, M. (2014). Non steroidal anti-inflammatory drug induced damage on lower gastro-intestinal tract: is there an involvement of microbiota? Current Drug Safety, 9(3), 196-204.

Morris, Z.S., Wooding, S., & Grant, J. (2011). The answer is 17 years, what is the question: understanding time lags in translational research. Journal of the Royal Society of Medicine, 104, 510-520.

Neves, A.T., Coelho, J., Cuoto, L., Leite-Moreira, A., & Roncon-Albuquerque Jr., R. (2013). Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk. Journal of Molecular Endocrinology, 51(2), R51-R64.

Rapin, J.R., & Wiernsperger, N. (2010). Possible links between intestinal permeability and food processing: A potential therapeutic niche for glutamine. Clinics (Sao Paulo), 65(6), 235-643.

Schmitz, H., Barmeyer, C., Fromm, M., Runkel, N., Foss, H.D., Bentzel, C.J.,…Schulzke, J.D.(1999) Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology, 116, 301–307.

Sender, R., Fuchs, S., & Milo, R. (2016). Revisited estimates for the number of human and bacterial cells in the body. PLOS Biology, 14(6), e1002533.

Seto, C.T., Jeraldo, P., Orenstein, R., Chia, N., & DiBaise, J.K. (2014). Prolonged use of a proton pump inhibitor reduces microbial diversity: implications for Clostridium difficile susceptibility. Microbiome, 2(1), 42.

Suzuki, T. (2013). Regulation of intestinal epithelial permeability by tight junctions. Cellular and Molecular Life Science, 70(4), 631-659.

Tatsuno, K., (1989). Intestinal permeability in children with food allergy. Arerugi, 38(12), 1311-1318.

Thomas, K.E., Fasano, A., & Vogel, S.N. (2006). Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease. Journal of Immunology, 176, 2512–2521.

Tracey, K.J. (2017). The inflammatory reflex. Nature, 420, 853–859.

Turner, J.R. (2009). Intestinal mucosal barrier function in health and disease. National Reviews in Immunology, 9, 799–809.

Vighi, G., Marcucci, F., Sensi, L., Di Cara, G., & Frati, F. (2008). Allergy and the gastrointestinal system. The Journal of Translational Immunology, 153(Suppl 1), 3-6.

Vlassara, H., & Uribarri, J. (2004). Glycoxidation and diabetic complications: modern lessons and a warning? Reviews of Endocrine and Metabolic Disorders, 5, 181–88.

Wallace, J. L., Syer, S., Denou, E., de Palma, G., Vong, L., McKnight, W.,… Ongini, E. (2011). Proton pump inhibitors exacerbate NSAID-induced small intestinal injury by inducing dysbiosis. Gastroenterology, 141(4), 1314-1322.

Watson, A.J., Duckworth, C.A., & Guan, Y, (2009). Montrose MH. Mechanisms of epithelial cell shedding in the Mammalian intestine and maintenance of barrier function. Annals of the New York Academy of Sciences, 1165, 135-142.

Westall, F.C. (2007) Abnormal hormonal control of gut hydrolytic enzymes causes autoimmune attack on the CNS by production of immune-mimic and adjuvant molecules: a comprehensive explanation for the induction of multiple sclerosis. Medical Hypotheses, 68, 364–369.

Yacyshyn, B.R., & Meddings, J.B. (1995) CD45RO expression on circulating CD19+ B cells in Crohn’s disease correlates with intestinal permeability. Gastroenterology, 108, 132–138.

Yu, Q.H., & Yang, Q. (2009). Diversity of tight junctions (TJs) between gastrointestinal epithelial cells and their function in maintaining the mucosal barrier. Cell Biology International, 33, 78-82.

Dr. Mercola and Dr. Chutkan on Gut Health

Source: Mercola.com
Dr. Mercola | Dr. Chutkan
February 3, 2017

http://articles.mercola.com/sites/art… In this video, Dr. Joseph Mercola, founder of Mercola.com, and Dr. Robynne Chutkan, author of the book, “The Microbiome Solution: A Radical New Way to Heal Your Body From the Inside Out,” talk about the importance of gut health to overall health.

Dr. Mercola and Dr. Chutkan on Gut Health

Source: Mercola.com
Dr. Mercola | Dr. Chutkan
January 24, 2017

http://articles.mercola.com/sites/cur… In this video, Dr. Joseph Mercola, founder of Mercola.com, and Dr. Robynne Chutkan, author of the book, “The Microbiome Solution: A Radical New Way to Heal Your Body From the Inside Out,” talk about the importance of gut health to overall health.

How Monsanto’s Roundup Unleashes Chemical Violence Against Women & Children

Glyphosate
Source: NaturalNews.com
L.J. Devon
August 8, 2016

One of the greatest threats to human health today is a violent chemical called glyphosate, which is the main ingredient in the famous weedkiller, Roundup. Glyphosate is sprayed on lawns and gardens all across America, with little regard to what it’s actually doing to the cellular health of men, women and children. The top genetically modified crops in the world, such as corn and soybeans, are genetically modified for a reason – to withstand glyphosate spraying, year after year.

As glyphosate accumulates in the environment, and as it’s introduced into the human body through the food supply, how does it affect the nervous, immune and endocrine systems of humans?

Glyphosate ravages the endocrine system, distorting hormones, damaging DNA and beneficial microbial co-hosts

Glyphosate is a violent chemical because it goes to war with the natural functions of the human body, including the endocrine system. The human endocrine system is made up of glands that produce hormones. Hormones are chemical messengers that signal for the balance and homeostasis of important bodily functions. When hormones are disrupted by glyphosate, important functions such as metabolism, behavior and fertility are adversely affected. Glyphosate goes to war with the human ability to reproduce.

The chemical glyphosate also acts much like an antibiotic in the human gut, destroying beneficial microbes that aid in digestion and initiate immune system functions.

Mixed with emulsifiers and surfactants, glyphosate becomes a powerful force, penetrating to kill not only plant cells, but also microbial cells interacting with human cells. This causes genetic damage, changing human DNA in ways that people cannot understand. When pregnant woman are exposed to glyphosate early in gestation, the chemical adversely affects the sexual differentiation stage of embryonic development.

U.S. government increases allowable glyphosate residues as women and children are chemically assaulted

Many birth defects are actually defects caused by glyphosate. Instead of banning it, the U.S. EPA continues to raise the residue limits, allowing more of this chemical to be sprayed on food. The FDA has also increased the threshold for glyphosate on fruit and vegetable crops, as the chemical is paraded as safe – time and time again. It’s chemical warfare, and it’s destroying the developing bodies of the most vulnerable in society – children – while also wreaking havoc on the reproductive systems of women.

As Mike Adams writes, in Food Forensics, “Every institution in America, including Congress, the mainstream media and universities, all agree that chemical violence against women and children is completely acceptable in America as long as certain corporations are earning sufficient profits from the practice. In a world where Female Genital Mutilation is considered a crime against women, it is astonishing that the chemical mutilation of all women is somehow acceptable across America.”

What changes will you make to stop the exploitation of women, children and future generations?

Are you going to participate in the chemical violence by purchasing Roundup and other glyphosate containing products at the store?

Will you talk to your local farmers about the dangers associated with their mass spraying of glyphosate?

There is a major difference between genetically modified foods and organics. How will you change your eating habits to defend yourself and your family against the most pervasive poison lurking in the food supply?

How will you purify your drinking water, to deny glyphosate an entryway into your cells?

Will you continue to do as you’re told, allowing men, women and children to be chemically mutilated from the inside out?

How will you take your healthcare into your own hands, finding ways to grow your own food, free of this violent chemical?

As the U.S. government and corporations like Monsanto arrogantly ignore the scientific evidence on glyphosate, they will continue to forcefully lie and poison the people on this planet. Because they are not held accountable for this psychopathic behavior, there is no rule of law – unless a diligent, well informed and courageous public rises to the occasion.

Will you partake in the mass chemical violence of women and children, or will you stand for justice?

Read More At: NaturalNews.com

Sources include:

MotherEarthNews.com

Science.NaturalNews.com

This Is The Most Damaging Thing To Your Body

Source: iHealthTube.com
August 3, 2016

So many things are posing a challenge to our health on a daily basis. Naturopath Ann Boroch discusses what she calls the ‘body breaker’, and possibly most damaging thing to our health. Find out how it affects all of us to varying degrees and what we can do to keep it under control or at least reduce its effects on our health. The more you know that this is the most damaging thing to your body, the more you can help yourself.

Microbial Diversity & Weight Gain

Source: DavidPerlmutterMD
Dr. David Perlmutter
June 20, 2016

A new study in laboratory animals inoculated with human gut microbes shows how desperately important dietary prebiotic fiber is, in terms of maintaining microbial diversity. Low levels of prebiotic fiber lead to loss of diversity, which, in humans, is associated with a variety of diseases, including diabetes and autoimmune conditions. The study further demonstrates that while introduction of prebiotic fiber does restore the diversity to some degree, subsequent generations of these laboratory animals are less able to recover their diversity, with some species of gut organisms actually becoming extinct.

Find the study here: http://www.drperlmutter.com/study/die…

Top 7 Reasons Why Chemo Fails, Creating New Cancers & Crippling The Chances Of Recovery

Cancer
Source: NaturalNews.com
S.D. Wells
June 12, 2016

First of all, most cancers are created by consuming chemicals, and those cancer cells exist in the blood and can travel throughout the body. So what’s the use of going “under the knife” to cut out some flesh when that same person keeps eating, drinking, applying and injecting chemicals that cause more cancers? Answer: None.

Plus, tumors are actually one of the body’s way of containing cancer cells, and when surgeons attempt to cut them out, they often let many of those cells escape. Then, those same doctors, called oncologists, radiate the “marginal area” where the tumor or cancer was removed, and that radiation itself causes new cancers. Then, to top it all off, afterwards, those patients (victims) are dosed up with chemotherapy drugs that are derived from poisonous mustard gas chemicals used in WWI and WWII (Zyklon B to be specific) to kill people, so where’s the logic? Chemotherapy is as archaic as bloodletting, back when doctors believed that a fever could be cured by draining large amounts of blood from people which drastically compromised the person’s immune system and usually killed them.

Recent surveys and the resulting statistics show that 75 percent of doctors and oncologists themselves will never take chemotherapy if they get cancer, and they will not recommend it to their relatives, because they know the grim statistics involved and the long-term health damage, including new cancers and death. When will Americans wake up and realize that dousing the body and injecting it with known carcinogens simply creates new cancers, cripples the immune system and exterminates all nutrition, preventing the body from fighting cancer and minimizing all chances of survival?

Just because the mainstream media, fraudulent science, bogus medical journals and rich oncologists push chemotherapy as a “first order of business” when cancer is discovered in the body, doesn’t mean it’s the right thing to do or even a viable option for treatment. Even mammograms have been nicknamed “scam-o-grams” because they are exposing the body over and over to more radiation, false-positives, stress and likely unnecessary invasive treatments. What’s the solution? It’s two-fold. One: realize that the cancer industrial complex is one huge scam to make money off Americans’ ignorance. Two: research organic food, organic remedies, and holistic therapies that have much higher statistics for preventing, treating and curing cancer.

So, let’s review the top seven reasons why chemotherapy fails more than 97 percent of the patients (victims of the chronic care system) to whom it is administered:

#1. Cancer cells are mutated cells that multiply uncontrollably and travel in the blood, so surgery, chemotherapy and radiation are next to useless as means of eradicating them.

#2. Chemotherapy literally destroys good gut bacteria, the “biological seat of immunity” for the human body, and thus cripples your chances of fighting off the cancer, no matter where it is in the body.

#3. Chemotherapy was invented by Nazi scientists hired less than one decade after WWII, who knew then, and still know now, that chemotherapy does nothing more than make the cancer temporarily recede, only to come back with a vengeance, within a few months or a couple of years.

#4. Chemotherapy is a mixture of toxic chemicals that cause cancer, so the treatment itself is a culprit of the “disease” being treated. Would you inject snake venom into your muscle tissue through a needle if you were bitten by a poisonous snake?

#5. Chemotherapy makes people so sick that they can’t even eat, so how can a person get the required nutrition to heal if they don’t even have a desire to eat food?

#6. Chemotherapy is mostly administered in hospitals, where superbugs (bacteria and viruses) are rampant and are immune to antibiotics, so the longer you’re stuck at the hospital, the more your chances of dying there increase exponentially.

#7. More often than not, chemotherapy is administered after intense, invasive surgery and cancer-causing radiation treatments, so the stress to the human body is compounded, adding to the health chaos and an overall crippling of mental, physical and emotional health in general.

Americans are literally scared into death traps by the cancer industrial complex

Pretend for a moment that you’re lost in some underground cavern and you’re at a crossroads, so to speak, and there are three long tunnels from which you must choose one to pursue in hopes of escape. At the entrance of each tunnel, a sign is posted that tells you your chance of escaping with your life. Tunnel number one says you have a 1 percent chance of escaping by traveling through it. Tunnel number two says you have a 3 percent chance of living through. Tunnel number three, though, says you have a 40–50 percent chance of survival. What’s the obvious choice?

Of course, these “tunnels” are a metaphor for cancer situations. Tunnel one describes a person who has been consuming chemicals for years and refuses to take any medicine or change their consumption habits at all – they will most likely die of cancer and never come out of the “tunnel” alive. Tunnel two describes a person who has consumed chemicals for years and who chooses chemotherapy (more chemicals) for the treatment of their chemically-induced disorder of cells, that have turned and attacked their healthy cells. They have, on average, a 3 percent chance of survival past 5 years. There’s not much light at the end of that tunnel either, in other words. Tunnel three describes a person who has consumed chemicals for years, but chooses to immediately stop doing so. They will change to a strictly organic food regimen and drink spring water, and explore natural cancer treatments.

Conclusion? Make informed decisions. Cancer can be cured. Check the sources below.

Sources for this article include:

BurzynskiClinic.com

NaturalNews.com

CancerActive.com

CancerActive.com

TruthWiki.org

TruthWiki.org

Continue Reading At: NaturalNews.com

Is Candida A Main Cause of These Conditions?

Source: iHealthTube.com
Dr. Jacob Teitelbaum
May 22, 2016

Autoimmune conditions seem to be on the rise. Find out what Dr. Jacob Teitelbaum says is one of the causes and is in general, a ‘big problem’. He explains what this infection is and how he generally goes about treating it. Find out how candida can be a main cause of so many health conditions

This Herbicide Could Be Slowly Killing Us AND Causing This Condition

Source: iHealthTube.com
May 4, 2016

There are many things that could be behind the continued rise of health conditions in this country. Here, Dr. Stephanie Seneff discusses one that she thinks is a main contributor. Watch as she connects the dots between a common weed killer and some of the many health conditions facing us today. Find out how this herbicide could be slowly killing us and causing this common condition.